Development and Positioning Accuracy Assessment of Single-Frequency Precise Point Positioning Algorithms by Combining GPS Code-Pseudorange Measurements with Real-Time SSR Corrections

نویسندگان

  • Miso Kim
  • Kwan-Dong Park
چکیده

We have developed a suite of real-time precise point positioning programs to process GPS pseudorange observables, and validated their performance through static and kinematic positioning tests. To correct inaccurate broadcast orbits and clocks, and account for signal delays occurring from the ionosphere and troposphere, we applied State Space Representation (SSR) error corrections provided by the Seoul Broadcasting System (SBS) in South Korea. Site displacements due to solid earth tide loading are also considered for the purpose of improving the positioning accuracy, particularly in the height direction. When the developed algorithm was tested under static positioning, Kalman-filtered solutions produced a root-mean-square error (RMSE) of 0.32 and 0.40 m in the horizontal and vertical directions, respectively. For the moving platform, the RMSE was found to be 0.53 and 0.69 m in the horizontal and vertical directions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement in Differential GPS Accuracy using Kalman Filter

Global Positioning System (GPS) is proven to be an accurate positioning sensor. However, there are several sources of errors such as ionosphere and troposphere effects, satellite time errors, errors of orbit data, receivers errors, and errors resulting from multi-path effect which reduce the accuracy of low-cost GPS receivers. These sources of errors also limit the use of single-frequency GPS r...

متن کامل

Automatic Aircraft Landing over Parabolic Trajectory using Precise GPS Measurements

Global Positioning System (GPS) based aircraft landing is a methodology still not in use today despite the widespread use of GPS. This is primarily because a standard single frequency Global Positioning System (GPS) receiver provides a positioning accuracy of approximately 4-20 m which is not acceptable by aviation standards for precision landings. The accuracy of GPS can be further enhanced wi...

متن کامل

High-Precision Platform Positioning with a Single GPS Receiver

The goal of the research described in this paper is the design of a GPS data processing technique capable of producing high-precision positioning results, regardless of platform dynamics, utilising only a single, high-quality receiver. This is accomplished by combining two processing philosophies: point positioning – making use of precise GPS constellation ephemeris and clock offset information...

متن کامل

Aircraft Automatic Landing Over Parabolic Trajectory Using Smoothed Pseudorange Measurements

A standard single frequency Global Positioning System (GPS) receiver provides a positioning accuracy of approximately 4-20 m. This precision can be further enhanced with dual frequency receivers which are able to provide accuracy around 1-12 m. However, these errors are quite large when it comes to safety of life applications such as aircraft landings. Differential GPS (DGPS) allows for precise...

متن کامل

Standard Positioning Performance Evaluation of a Single-Frequency GPS Receiver Implementing Ionospheric and Tropospheric Error Corrections

This paper evaluates the positioning performance of a single-frequency software GPS receiver using Ionospheric and Tropospheric corrections. While a dual-frequency user has the ability to eliminate the ionosphere error by taking a linear combination of observables, a single-frequency user must remove or calibrate this error by other means. To remove the ionosphere error we take advantage of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017